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Qutline

» Survey of present RHIC experiments

* Microelectronics Trends 1991 — 2001
— CMOS scaling
— Advances in packaging, PCB, assembly technology

e Power and Interconnect



Custom monolithic front ends

Can be efficiently mass-produced with excellent
economy of scale:
— E.g., maskset + 10 wafers ~ $300K, 1000 chips/wafer
— Additional wafer ~ $5K
— Incremental cost < $10/chip
— Chip may have 16 — 128 channels

Can be located close to dense detector electrode
arrays

— pixels, micropattern & segmented cathode designs

Can combine functions on single chip, replacing
PCB/hybrid/cable connections with lower cost on-chip
connection

Can reduce power*



Advantages of monolithic realization
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Microelectronics in RHIC 2001

e STAR
— TPC
« CMOS 1.2 um P/S, SCA, packaged
— SVT
e Bipolar P/S, CMOS 1.2 mm SCA, 240-channel ceramic
hybrid
e PHENIX
— MVD
e 1.2 um CMOS P/S, AMU/ADC, ceramic MCM
— EMCAL

e 1.2 um CMOS integrator/VGA/TAC/sum, AMU/ADC,
packaged

— Pad chamber
e 1.2 um CMOS P/S/D, 1.0 pum CMOS DMU, packaged



Microelectronics in RHIC 2001 (con't)

« PHENIX con't.
— Drift Chamber
» Bipolar A/S/D, 0.8 yum CMOS TDC, packaged
— Time Expansion Chamber
e 1.2 um CMOS P/S, FADC, 1.0 um DMU packaged
— RICH
e 1.2 um CMOS integrator/TAC, AMU/ADC, packaged
— Muon tracker
e 1.2 um CMOS P/S, AMU/ADC packaged

« PHOBOS
— Si pad
e 1.2 um CMOS (VA-HDRL1 from IDE), chip-on-board



TEC-TRD Preamp/Shaper

Block Diagram Die Layout
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SVT Preamp/Shaper

Die Layout
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SVT 240-channel multi-chip module
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D. Lynn et al., “A 240 channel thick film multi-chip module for readout of silicon
drift detectors”, NIM A439 (2000), 418 - 426



Microelectronics in RHIC 2001 — Summary

Monolithics are used to read out all detector types:
— Semiconductor
— Gas avalanche
— Scintillator/PMT

About 0.5M channels instrumented with monolithic
electronics

About 17 custom chips have been developed

Designs done by national laboratories (13), university
groups (2), industry (3)



Custom Monolithics — technology options

Standard CMOS o« SiGe
Highest integration density — Increasing use driven by RF
Suitable for most analog circuits
designs (low voltage issues for — Interesting for high frequency
deep submicron) work
Best for combining analog and .

Silicon on insulator (SOI)

digital
. : — Modest speed advantage for

— Short life cyclg (2 — Drawbacks for analog

years/generation)
_ — Rad-hard
Bipolar GaA
— Workhorse of “old” analog S

— Digital, RF only

Limited vendor availability

Speed/power advantage over
CMOS (diminishing)
Low integration density

BICMOS

Complex process, expensive



CMOS layout examples

Analog Digital




CMOS Scaling
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CMOS Technology Roadmap

Year 85 88 91 94 97 00 02 04 07 10 13
Min. feature size [um] 2 15 1.0 0.7 0.5 0.35 0.25 0.18 0.13 0.10 0.07
Gate oxide [nm] 44 33 22 16 11 7.7 55 4.0 2.9 2.2 1.6
Power supply [V] 5 5 5 5 5/3.3 3.3 2.5 1.8 1.2 1 7
Threshold voltage [V] 1.0 0.9 0.8 0.7 0.6 0.5 0.45 0.4 0.3 0.3 0.3




IBM Cu-11 Process (Blue Logic)
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Technology features for low-noise analog circuits

 High g,/C ratio (fy)

* Lowy(y=0n*R,)

 Low 1/f noise

e High input impedance device

* High g,,/g,

e Controllable sub-nA current sources

e High-quality floating capacitor

e (Good switch device

o Excellent AC isolation

« High supply voltage Color key:
o ESD-tOlerant improvement with scaling

no improvement

 Radiation-tolerant expected
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Dynamic Range

Dynamic range vs. scaling
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Gate tunneling current

Gate current expected to
increase 100 — 200 x per

70nm Node I Rodder et.al.,
D

generation below 0.18 pm

IEDM98
Jox ~ 100 A/cm? projected for L, LS00,
= 0.1 um generation with nitrided & PV [Lo et. al, EDL97]
: igh- \
S|02 < Needed130nn}k
: .. \
Considered tolerable for digital Projectedﬁ\
circuits (total gate area per chip Nitrided Si0, ¥ J8%m

b Y
~ 0.1 cm?)

0.5 1.0 1.5 2.0 2.5

Typical CSA input FET would
have I ~1 - 10 pA; ENCp ~

2000 - 7000 rms e- at 1 psec SiO, gate leakage current (Lo et al., Electron Dev.
L etters 1997)

TOX—EFF PhySical [nm]



Monolithicsin scaled CMOS

e Analog:

— Noise limits not changing significantly

— Power can be reduced

— Design effort required for high dynamic-range systems

— Increased integration density, but not as much as digital
 Digital:

— Big increase in integration density

— Reduction in power

— Big increase in clock frequency

— Need to manage design complexity

« Analog/digital co-existence
— Simulation capability limited
— Anticipate the need to iterate



Power

Example: CMS Tracker

« Total # channels: 75,500 FE chips x 128 = ~10M
 Power/FE: 2.3 mW/channel

 Pwr/ch data TX: ~0.6 mW/channel
 Supply:25Vand1.25V, P, =~30 kW

e Total FE currents: IDD,,s: ~7.5 KA, IDD,5,: ~6.5 kA
 Remote supplies

o # of service cables: 1,800

 Power in the cables: > 75 kW

* Cross section of power cables and cooling pipes directly
proportional to power dissipated !



Interconnect: Technology

« Significant advances in packaging, PCB, assembly
technology

Thin- and fine-pitch leaded SMT components; BGAS; chip-
scale packages; packages with low thermal resistance

Flip-chip and chip-on-board assembly

Microvias, thin-core laminates, flex for high density
Integration (HDI)

Passive component miniaturization, arrays
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Standard packages of 2001

150 micron

0.5 mm max.

Die Thickness
Thin Core
a ¥ FR-5 Laminate
Mounted Height - /
/ Standard Transfer Low Loop

0.3 mm dia . -
Solder Balls Molded Encapsulant Wire Bonding

Amkor thin BGA

National microSMD
1.41 x 1.67 x 0.85mm body size (8L)
“Silicon Dust”

Stacked chip-scale package



| nterconnect 1ssues in monolithic front ends

Detector —> preamplifier

— Lowest possible capacitance
— Ease of assembly

— Diagnostics

— Repair/rework

Front end —> ADC
— Efficient use of expensive “analog” interconnect

ADC —> off-detector processing
— Efficient use of bandwidth for cost/power control

— See:

http://snowmass2001.web.cern.ch/Snowmass2001/Docs/Marchioro%20Snowmass%2020
01.pdf

System-level power distribution
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Relative Interconnect Cost

Cost of interconnect
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Summary

 RHIC detector upgrade programs can take
advantage of a decade of progress in
microelectronics.

o Up-front attention to power and interconnect issues is
essential (avoid cable/connector/cooling problems
after installation):

— Look for opportunities to save power at all levels:
* Technology
» Circuit topology
« Architecture
» Algorithms
« Data compression

— For matrix-type detectors, design readout plane together
with FEE
— Maximize the use of on-chip interconnect

« Don't transfer analog data from chip-to-chip
« Zero-suppress on-detector



